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o I consider task systems modeled by directed acyclic graphs in which nodes represent tasks -
- and arcs express precedence constraints, and each task can be computed by a processor in one ::
unit of time. It is known that if there are only two processors or if the graph is a tree. then .
~ , , . ‘ -
= there are polynomial time algorithms for scheduling the graph in minimum time. but in general N
. - the minimum time scheduling prcblem is NP-complete. The communication cost of a schedule is s
‘ the number of pairs {(p .x ) such that processor p does not compute task x but computes an .
~3 immediate successor of x; that is, the result of x must be communicatled to p. | consider the ~
rroblem of finding schedules that minimize finishing time and among those. finding scheduies o
O that minimize communication. | prove that the problem with two processors on an urbitrary o
< .
. graph i1s NP-complete The probiem ith arbitrarily many processors on a tree i1s also \P- o
- . .,
' comricte. The case of "a0 processcrs on a tree is open in general. but | establish tight bounds N
- . . . ' L .
- for two processers on the indirected complete ternary tree of height £ : for minimum {.me. com- .
muniation kK —logik +3 ¢ achievable, and communication & ~logix +1 is necessary. -
", :
1)
.
g
-
.:- W
: ~
‘e
13
Y-, v,
SN AT AT A AT

AN e N T L ARy SRy, O LS ER PO NS P O POy
i . . o 8 L) L. ah R -




PN

P
R

..'..‘.1

iv

ACKNOWLFEDGMENTS

I would like to thank my advisor, Michael C. Loui, for his inspired and inspiring help and
guidance. as well as his undying confidence. support. and patience. | also thank Michael Wu for
all of his help with TROFF and the printer. Thanks to my departmental friends Dee. Chip M.,
Rick. Chir Q.. Pat. and the rest of "The Gang" for helping me to maintain sanity during my
thesis marathons. and thanks to the [llini Squares. particularly the C1 tape group: | needed the
diversion. Special thanks also to Kevin for his love and biweek!y visits that helped keep me
going. 1am grateful to my cats. Fargo and Daphne for keeping me warm at night and not
getting too sick when | needed 1o work. Lastly. I would like to thank my family for supporting

and encouraging me in everything | try to accomplish and letting me know that theyv believe in

me.

Supported by The Office of Naval Research under Contract N0O014-85-K-0570 and by The

Jeint Services Electronics Program (LS. Army. U.S. Navy. U.S. Air Force) under Contract

NOOUT4-85-C-0149.

v e e v,

N

P
e o

.
DR

PR A

2 )]

et et

-



|45

rov i
»

YA

. ¢ v v

LS AN

XA

.

TABLT OF CONTENTS
CHAPTER PAGE
1. INTRODUCTION/LITERATURE REVIEW L i 1
L N 1 T8 e LT R o o O T PSR TOPTOROPOPPPPP 1
1.2 SCheGUENG <o 2
1.3 Communication MintmizZatiON . ....ooooiriiirnmmiiiriiieine e e 4
1.4 Other Related Communication Results ... e 6
1.5 Other Related WorK oo e 7
1.6 Scheduling and Communication MinimiZAUON oo 8
2 DEFINITIONS AND NOT AT HON S e e s 11
2.1 THE MOGe e e e N
2.2 General Graphs and Muitiprocessor Schedules............ 11
2.3 CoOmMMUNICATION COST 1o aeeeiiis ot oot e e ee e oot ettt ettt vt e e ae s et e e e e e e e et e a e e e e e e ann e 12
B B Y U U U OO RSO PP PRURS 13
3. MINIMUNM TIME AND COMMUNICATION SCHEDULING ON TWO PROCIESSORS ... 14
3.1  General Graphs on T'a0 PTOCESSOIS .oiiiiiiiiiiiiiiii it 14
3.2 limited In-degree Graphs on Two0 Processors. ...t 24
4. SCHEDULING COMPLETE BINARY TREES ON TWO PROCESSORS ..o 34
5. SCHEDULING COMPLETE TERNARY TREES ON TWO PROCESSORS ... 36
5.1 An Upper Bound for Communication Cost (Schedule} ... 36
52 A Lower Bound for Communication Cost. ... e 40
52,1 Definitions AU NOUTBUIOIS oooeiii i et iet et e e e e oot en ettt e e e e e et eeeeeeania e ee s e e e mmsaiansnnaans 40
S22 Elementiary OBSerVaALICIS oo ittt et 41
§.2.3 Scheguie Trunsformations..... e e U OUPUUURTPPRRTRPRRPPOR 42
S2.4 Lemmas and Coro: @i o e e 46
S S The Lower Boumid o e 55
53 Compar:son of Upper anc Lower Bounds............. e 60
6. CONCLUSIONS AND OPEN PROBLENMS i 62
R L R N T S e o e e 64

R N
-

PRy




s

-"’ I‘ .

s |

Ll

‘SA “l"".

Loy

8

v
v

I

CHAPTER |

INTRODUCTION/LITERATURE REVIEW

1.1 Introduction

The advent of muluiprocessor networks has introduced potential computing capabilities
previously undreamed of. Before we can make full use of these capahlities, however. we have
much to learn about the nature of parallel computing. Jt is well known that although in the
ideal situation system throughput increases linearly with the number of processors, in reality
this does nut occur  In fact. of ten after the first few processors. udding additional precessors 1o a
svstem may decrease system throughput. The reason ‘or this. according to Chu et al. {Chu
1950]. is interprocessor communication: users tend nat 10 schedule the tasks among processors in
such a wayv as to minimize final completion time 1s determined by actual task computation time

and communication between processors.

In this thesis, I study the difficulty of scheduling multitask jobs on muliiprocessor svsiems
o minimize completion time and communication cost. A multitask j1ob is represented by a
airected acvehic graph (dag i which each node represents a wask. and an arc frem node v oto
node ¥ means that nrode v must be compruted before node . und the result of computation of v
Must De Anown by tne processor computing ¢ . v obtain g schedule that minimizes both
provessing complet:on time and communication cost (defined av the number of times that an.
Processur must pass the resalt of any of 1ts computations o another processor s¢ that the secona
cencormpute ¢otask ) s an NPosard preblem [ nave shewn this 1o be true for arhiirary granhs

on tae proceceers aithouch Coffman and Granem ha e de ized o+ pobvnemual e wegnethm Lor

‘
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the =rc 2m anen communicat.on noloonsderss O fiman 19720 Furhermcre. show the
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(9]

and lower bounds on communication for minimum time schedules for complete binary and
ternary trees. | determine the lower bound for ternary trees by showing a new partition result

for complete lernary trees using a combinatorial method that may be of independent interest.

1.2 Scheduling

Scheduling and task distribution (among processors) are two problems that have been
studie ! fairly extensively in the last ten vears. although much of the werk on the two problems
hax been disjoint. Section 1.2 addresses scheduling literature. In Section 1.3, 1 review some of
the rexearch in communication minimization. In studying task scheduling, we view the overall
job as @ directed acvclic graph. where cuch node in the graph represents cne task. or part of the
overall job to be completed. Thus, wher | use the term node. I will mean the task represented
by that node. Arcs in the graph represent precedence constraints, i.e.. (z.v ) is in the graph if
tusk ¥ must be computed before computation of task v can be started. Thus. the graph specifies
a paruial order on the tasks. In the general (unit time execution) scheduling problem as defined
by Ullman [Ullman 1975} we are given a set $ of tasks. a partial order Z on S expressing
precedence constraints. a number & of identical processors. and a time limit ¢ . The question ix

' hether there 1s a total function f:S — {1.2. ...¢~1} such that
1. Hu Zv.then flu) < flvivuy €8S.

2. w0 € <1t thereareat most x valuesof v (v € S)forwhich f (v) =1,

Paraphrased. the problem is to determine whether the tasks can be scheduled on the &
processers within time ¢+ such that foranyv twe tasksw and v in S w 2T v then v s
~cheduled before v, and at cach instant. cach processor s assigned (o at most one task. Ullmun
show s that this unit time precedence-constrained scheduling probiem s NP-complete.
burthermore. he goes on to show that two-processor scheduling with weaighte of 1 and 2. that s,
*he proniem stated above extended (0 ailow lasks either one or two uniis of ime to compute. iy

\P-comriete.
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' Thix last result is moderatelv surprising since Coffman and Graham construct a poelynomaal
= I
ume algorithm tor two processor scheduling if all tashs have equal execution umes [Coffman %
l.‘ ‘,
. 1972] The algorithm for computing the schedule consists of two pa,ts. First the tasks are all ey
(%
- tubeled with positive integers in such a way that vu € S. vy €8 vuch thatu T v. the label of
o . R4
h w s yreater than the label of v. The second part of the algorithm is processor assignment. o
L Wheneter u processor becomes available. it computes the task u with highest label such that ~
. -
U ere s no taskh v IZ w that has not vel been computed. Ullman's results show that simply -
- - »
X aliowing some jobs 10 require computation time of 2 makes the problem significantly more <
) Y
I
- Gditficul w.
\.l =
L : o _
More recently. Gabow has developed an almost hinear time algorithm for unit execution -4
i time two processor scheduling {Gabow 1982]. -
It ‘s e require the graph representing the paruial ordering for the unit time execution =

scheduling probiem e be a tree. we can again design a polynomial time algorithm for the

2

s

problem regardless of the number k of processers [Hu 1961]. 1u gives an algorithm for

‘I

scheduling indirected trees. ie.. trees 7 with root v such that for all nodesw in7 . u Zv.in

a

e |
\

lireur ime. | nave not been able to devise & poly-time algorithm Jor the same problem taking e
o
~ . '\
commuNIcation ¢osis nto account. ke the Cotfman-Graham ta o processor scheduiing ~
- ~
-.' - .\.
aigorithm. Hu's aigorithm reguires labeling all nodes of the graph with integers. In thiscaxe.
.
- -
- 23ch node w1s given the label d (w ) + 1 where d (x ' is the iength of the path from v 1o the .
-0t For the actual schedule. define un ¢ailable node to de any node « such that all of w's N
-, [
i r
{= predecessors have “een computed: then at each time unit compute the © avatlabie nodes vaitn
.l
"o AN be.. ‘1 he e Ut deciss ony arrarttrarsy o fever Chun A cowes gre oaniahie i
-
CoeT s Tide 1 e acdiabie andes
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1.3 Communication Minimization

Whereas scheduling problems concern determining at what time each of several or many
tashs should be computed. communication mimimization problems concern processor allocation.
Much of the previcus work in this field does not consider precedence constraints among the
Larious tasks at atl, but aims primarily at minimueang computation cost. The svstem has two
Rinds of nonnegative contingent costs: a processing cost for each pair (P .u ) where P s a
processaor and ¥ a task in the svstem. and a « smunication cost {or each pair (v v ) where v and
voare tasks. The processing cost is incurred when task « is computed on processor 7, while the
communmication vost s incurred when tasks z and v are computed on different processors. !f the
communication cost for a given pair (w4 ) 15 infinite. then noder v and v must be computed by
the same processor. Similarly. if the processing cost for a pair (7 .« ) is infinite. then node u -
cunnot be processed on processor P. Toial inter-processor communication cost is the sum of all .
communicalion costs incurred in a given schedule. The computation cost is defined as the sum of
the processing cost for each task on the processor to which 1t 1s assigned, and total inter- -

Processer communication ¢ost.

=
Chu et al. present a number of strategies for the task allocation problem [Chu 1980) The h
irsl strategy takes a network tlow upproach to mimimizing total cost tas defined above) ina two -
provessor svstem [Stone 1977] In thus method, the entire job s represented as a graph with each
nude representing 4 task to be performed. The graph has addiuonal nodes P and O . one for each =
oftne processors. Unlike the directed graphs used for the scheduling problem. in this graph. the .
- ;f
eues ure undirected and wewghted. Forevery pair of tasks o and v . the graph has an edge (1 1)
arth aeisht equal o the incurred communicztion ¢ost when voand v oare computed by different -
nrocesserss burthermore. for 2ach tavk v the oreph has edges (7 w b ana 10w i vath aeighls
-::
dgesericed Beloa s Fdoe (7w b has aeight egaal W ine processng cost 10w b Nimnlarly . edge -]

S0 L has aergat el 1o processing vast Ul L Mimmging total cost as delned above s a -

f
- {
1
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mimimum cut problem for this graph.

Unfortunately . thiwapproach s quite himited since 1t handles only two processor systems.

hie next approach presented by Chu et al. [Chu 1950]. an integer programming approach. is
much more ilexible and expandable  In this method. communication costs betseen all pairs of
tashs are represented ina volume malrix, and the objective function s the sum of individual
processing costs and commumicaiion costs. This method s more flexible by virtue of the fact
that it gllow s maore than two processors, and other limits can be programmed into the svstem
simpls by adding constraint equations for each. Of course. the major disadvantage of this
approach s that the general integer programming problem ts well known 1o be NP-hard [Gare:.
1979]

Lo.in her doctoral thesis [Lo 1983], also addresses the problem of minimszing
communication st in a4 multiprocessor svstem She presents a heuristic algorithm. Algorithm
A for obtamming g nesr-cptimal processor assignment for svsiems with more than two
rrocessors. Algorithm AL consists of three parts: Iterative. Lump. and Greedyv. lterative 1s a
ceneralization ot the netwerk flow approach suggested earlier to give ar opt mal assignment for
"most” o the taskhs. Lumn determines a lower hound on the towal cost of a k -way cut (where £
i~ the number ol processors) of the remaining unassigned tasks, and based on this number
Jdedides erther te tump ol of the tasks in a group assigned 1o one processar or 1o let Greedy

vompiete the assignment  Greedy clusters those tashy HDetween wihich commuanication costs arv

" "

arce’ and assigns oo lasks an g sing e cluster 1o a Sing.e processor
None of the appraodches suggested thus far address the question of sverall completion Lime.

Cooacevans wosis Torancee dual tasky on green proce sets are treated as coastant and foall
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issue. however [Lo 1983] She points out that 1t s very dificult to schedule n tasks on &
processors {nand & positive integers) :n a baiunced way. ller model for scheduling to minimize
communicﬁlion and completion time includes a set § of n (disjoint) tasks each with finite
execution time. &k identical processors, and contingent communication costs ¢,, for every pair of
washs (v ). v and v € §. The cost of a processor allocation A is defined 10 be the maximum
over all processors I of the sum ol processing costs of all tasks computed by P and the
communication costs incurred by tashs computed by . The problem. then. is 10 devise an
allocation to minimize this maximum over all possible processor allecations for the given tasks
(ie. it is a minimax problem). Lo points out that even without the contingent communication
cost constraint. the problem is NP-hard. The addition of communication costs produces a more
difficult problem. If. however. exec.ation times | r all jobs are identically equal to a constant .

and similarly 1f the contingent communication cost between every pair of tasks is equal to a

ot
constant ¢, then il = >

k . . _ . ,
— |, an optimal schedule is determined by assigning the tasks in a
c n

|

<

e k . . : .
round robin manner; if instead & |— |, then an optimal assignment consists of computing all
n

l
<
tasks o a single processor. Lo goes on 10 give some heuristic results for cases when computation

Limes and contingent communication costs are nol as well behaved.

1.4 Other Related Communication Results

Papadimitriou and Sipser investigate communication from a slightlv different angle
{Papad:mitriou 1954a). They investigate a two processor system that uses 2n input bits divided
hets een the processors such that each processor has an n -bit input string. They describe a
communiiation compiexity hierarchy based on the number of bits that must be passed betw een
the two processors in order 10 solve a problem (exprressed in terms oi language recognition) that
s a funcuon of all 2n tits. COMDMICY £ )) s defined to be the set of languages thai can be

recognized by passing exactly / (n ) hits between the 1wo processors. regardless of the original

B’r

)

l'"l

L] ﬂ'_.l

S

r

L

< &
R

¥

. A -‘-

. .

a.-
.
s 7

"
P 4

.
Al

'

-,

r ('l .
R A vl

F ¢
-

eyl

W, .- B




v

NXS

iR

v

54 8
A

S |

)
.
B

s !
LN

wes

partition of the 2n bils hetween them. Papadimitriou and Sipser 20 on to esiablish several facts
about the communication complexity herarchy that parallel the classic tme-space hierarchy.

For example. CONNM(n —1) &= @ and NCONIN(/ (n)) @ COMAM (2! ")

Papadimitriou and Tsisikhis address the problem of dividing a4 job's inputs bel »een two
processors assigned 1o compute it s order 1o minimize communication necessary bets een the
processers in order to compiete the Job. This is an \P-hard problem [Papadimitriou 1982].
Comparing this result with earlier ores, we xee that not only is it difficult to minimize
communication necessary between processors when contingent communication between tasks s

known, but mimimizing those contingent ¢osts 1s also difficult.

1.5 Other Related Work

Thus far. we have considered time scheduling and processor allocation enurely dispointiy
frem all other issues, although Chu et al. do point out that the hinear programming approach to
m:nimizing overall cost considering communication costs is expandable {Chu 1980}, Garey and
Johnson consider a sim:lar issue in time scheduling. i.e.. the probiem of scheduling 10 minimize
comrletion Lime when there are additional resource constranis. In this model we are Jiven u set

N ot ta ks and @ number & of processors. Eachu € § hav an associated completion time ¢ 1w

and I reuch of 7 rescurces. a nonnegative resource raquirement K fw ). The tasks are related b

4 rartia’ order Z as in scheduling problems discussed earlier  Purthermore. ae are piven 4 ume
hmits o snd anonteger & forench resource R 1 S0 € . The s represent the amount 1 the

dxscuialed resour.e avaitable in the syvstem. The problem v 1o achie.e o ~hedule Jetinec as «

funcuon /N = 110 =1 wath the tollow ng stipulations:
P 2 s s w Ty oapies tuw )l Sctur T
.otw B 7 RS AN
ST fnenumber of wonsw Loh char o o« T 0 s L = el
Poler T methesetiuw 28 sucnthal fiws &0 oo
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Since the general scheduling problem ix NP-complete. so is this limited resource scheduling

problem. Garev and Johnson prove that it is still NP-complete whenk =2.c(u) =c(v)V
uar €85 and I defines a forest whenever r > . Incontrast, if & =2, ¢ is a constant

functlion. and LT is empty. then % » > () there is a polvnomial time algorithm to schedule the

tashs. If & = 3. then the problem again becomes \P-complete. even for»r = 1.

1.6 Scheduling and Communication Minimization

The problem of combining finding a minimal time schedule with a minimal communication
processor allocation is, of course. at least as dificult as either of its parts. and is a combination of
some of these previous problems. Alse. to speak of "minimizing time and communication” can be
rusleading. 1f all tasks are computed by the same processor, then communication costs are
eliminated. Unfortunately. though, the system may not be able to complete the entire job in
minimum time with most of the processors idle during the entire computation. Papadimitriou
and Ullman discuss this time-communication tradeoff 1n relation to diamend dags
(Papadimitriou 1984b]. A diamond dag is a directed acyciic graph (dag) that is the
generalization of Figure 1 below 1o n? nodes. Fach node of the dag represents one task needing
computation, and the edges specif v a partial order on the tasks. Additionally. the
communication cost of a schedule and processor allocation is defined to be the number of
provessor, node. immediate predecessor triples (£ .2 .p ) such that processor P first computes
node 7o hefore it has comyputed node p (although p must have been computed al some earlier
o by o dilerent processor) or if 1t never computes p. Papadimitriou and Uliman allow
nodes 1o be computed more than once :n this model Relating this 1o other models studving

vammuUNKcaiion, we Can ‘magine that an arc {from node v 10 node v represents an contingent

»
o
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- cecmmunication cost of 1. whereas the lack of such an arc represents an contingent E\
W~ »
’ communication cost of 0. If each node is computed only once. then the analogy is completely o
. parallel: cost ¢, is incurred whenever nodes 1 and v are computed by different processors. that
-
LY
B . . . )
1s, when node v is compuled by a processor that does not compute node v . Since multiple ».§
I 3
. computation of nodes is allowed. ¢,, is incurred whenever the frst computation of node v is by R
A
[ ] a processor that has not (yet) computed node u . Using this model. Papadimitriou and Ullman -
derive time-communication tradeoffs for this specific kKind of graph (or partial order). In e
- particular. any schedule computing ann X n diamond dag in time? = o (n- and o
— communication ¢ must satisfv ¢t = Q(n?) 3
) -
P -
L2 e
Aggarwal and Chandra also study communication-time tradeofls for scheduling dags S\
.-.
o N . . . . t’
p [Aggarwal 1985]. T.eir model uses a concurrent read exclusive write PRAM in which each S
pr .essor has a 19¢1] memer: and all processors share a glebal memery. The cemputation s N
. . . 3
‘e divided into cemputation :nd communication steps. In i jamputation siep. each Procssser can >,
-
..‘(-
_i access 1wo loc I merniHry addresses. whereas .n a communication step. 2ach "rocessar can Jccess Y
ores slocal memar . cidress. Al nputsare in the 3l sal memory, and all dnai sutpouts muast oe -
- reusmed to the g sbay ~ mory. Agzzarwal und Chanc-a use thi model to siadv m:aimum :::a
.c_o

T R R N L SR
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communication delays. i.e.. the mimimum number of communication steps necessary . for [ ]

particular computations: for instance, when two n X n matrices are multiphed using only ~calar
\

n? N

multiplications and additions. there is a bound on communication delay of 0| —— [ where k is '

s

—™
. 2
nt
the number of processors. and & € 3 Aggarwal and Chandra also study communication-

log=n =
=

ume tradeofs. They note that the tradeofl for diamond dags presented by Papadimitriou and
\*-'
. . . . ",
LU liman [Papadimitriou 1984b]) is obtainable only forz = lort =n. e

-

From this point ferward T will use the term schiedule 10 refer 1o the time schedule and the o
2%

precessor allocation simultanecusly . Afrau et al. address the problem of finding a minimum
Lime and communication schedule for any given graph [Afrati 1985]. They use u model similar X

o that of Papadimitriou and Ullman except that they do not limit the graph to diamond dags

="

and they allow each node to be computed only once. Thus. for a given graph G = (V' .4 ) and
schedule D . the communication cost is defined 1o be the number of pairs of nodes (¢ v ) such
thatu v € V. tu.v) € 4 . and v and v are computed by different processors in . This
purallels Papacimitriou and Ullman’s definition of communication when multiple computation E
of nodes is not ¢llowed. Since scheduling in general is NP-complete whenever ¥ > 3 and the

rartial order on the nodes is arbitrary. we cannot expect better for minimum Uume and -
communication scheduhing. Afrati et al. show that with two processors on a general graph, the

rrebiem s still NP-complete. Furthermore, 1 the graph is a tree and the number of processors is

uniimited. the problem ix also NP-complete. -
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i ﬁ Chapter 2

’::- > DEFINITIONS AND NOTATIONS
o

:"-..: o

Y

.',: ~

. 6 2.1 The Model

N

For the balance of thix aork. | consider 3 multiple task Job to he modeled as a directed
acvchic graph. or dag. In this gruph. each node represents a task. or part of the overall job to be
computed. and all tasks require equal computation time. Arcs represent precedence constramts.
If an arc tu v ) appears in the graph. then computaticn of node v depends on the result of
computaticn of nede v 1.e.. node ¥ must be computed before node v . and the result of
computation of node v must be known by the processor computing node v. Thiy appears to be a
reasonable form of representation. particularly in regard to a straight-'ine program. as pointed
out by Tompa [Tompa 1950]. Computation of the graph is by a number of identical processors.
Now lintroduce several definitions that will be used throughout the rest of the work to
facilitate discussion of scheduling such graphs >n idenuical processors and the communication

cost incurred in so doing.

2.2 General Graphs and Multiprocessor Schedules

The first faw definitions recard general directed acyclic grapns and schedules for processing

them. Welet G = (V' .1 ' bea dag with schedule and processor allocation > on & processors.

processer schedule: A processor schedule on x processors for G is a funciion
PV = 2 kb x N (N s the vet of natural numbers! such that
1l oherew ey e o2V owuen that fle ) = f (v ) and

v e sechthalte v € Y g G = 0 ) v = e then - <

proc: -wr assigned t+ Vo= lou taromey £ b then we s Ll Trewes oo

~ e

woces v 2srigmcS L nd s osseneculed co by trogessed U me s
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proc(v) Foreverv v € V' prociv) denctes the processor assigned to v in §.
n(P): For each processor 2. nt ) denotes the number of nodes in V" assigned o /7 in §.

comimunication node: A node v € Vs said o be a ¢ vununication node if there is a node

w € 1" such that v s ) € A and proc(y ) # proc(w ).

communication receiver. A nodev € V' is suid to be a communication receiver if there 1s a

node w € V7 xuch that (w v ) € .1 and proc(y ) = proc(w ).

communication to v: loreverv v € V', the communication to v is the number of nodes w such

that fw 1) € A und proc(y ) # prochw ).

available node: At any time! during the computation of a graph. an available node is defined
o be any node v such that all nodes w such that (i .w ) € A have already been computed:

thatis.if f (w)=(.j)thenj <.

2.3 Communication Cost

I prevent Uav definitions of commumication cost.

Defirnition 1t Foru dag G = (V.4 ) and processer schedule S communication cost 1s defined to

he the number ol pa:rs k. such that (w v ) € 4 and proc(u ) = prochy ).

Definition 2: Fora dag & = (V.4 )and processer schedule S communication cost s denned to
be the number of processor node pairs (P v ) such that processor £ does not compute node v

but computes at least one direct suciessor of v

: . M .
Papadim ricu and Ullman [Papadimitzicu 1993h] and Afratret al. [ dirati i988] hoth use
Denivon 100 communication in therr work. | :niroduce Definitien 2 as g more prachical

Jdefinition of communication cost. By counting each ars fuov ) such that proctu ) = procte ) as
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. Cmmunicaton wsang Definttion 1owe may be passing the same infermation between a given pair
o oprocessors seweral tmes Fornstance. of nodes v v and w € Vosuch that {w v ) (uow ) € 4
- ad procty D= proctw ) 32 proclu ) then the result of computing © must be communicated Lo

- Lhe processor computig voand wo This communicinen s counted in both definttions, however

‘ Definition 1ol communication counts it taice. Defimtion 2 counts it only or e. Defimition 2

<ouns by the nurvber of results that must He passed from vne processor to another. and

) assumes that the second processor can save each value for uso in processing all nodes requiring
11, ,

” 2.4 Trees

t

- partv): Forany node v . parfy ' will denote the parent of v. In an indirected tree 7, par(v ) is

the node w ~uch that woas directly above v in 77 thats theare (v .w ) isin 7.

child{v) For a node v cieldiv) denotes “he child »f v, that is. the node w such that v =

rartw g

" rclv)

In un ordered tree. »cividenotes the rightmost chiic of the node v,

Ietv) Inan ordered tree. el Tdenotes the leftmuoxst child of the node v
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i CHAPTER 3 I
: :
N MINIMUM TIME AND COMMUNICATION SCHEDULING .
v,
. .-
ON TWO PROCESSORS !
L
3.1 General Graphs on Two Processors
Although general minimum time scheduling on two processers can be done in polvnomial
tme [Cotfman 1972]) [Gabaw 1982). when a communication bound is introduced the problem -::
aguin becomes more difficult. Afrau et al. [Afratr 1985) showed that with Definition 1 of .
communication. this problem s NP-complete. Now I turn to Definition 2 of communication. &
. . . . hd
Whereas with Definition 1 we count communicat: \n arcs, in the two processor case using >
>
Il
Definition 2 we can count communication nodes. Though in general using Definition 2 of
A
communication a node could introduce more than one umit of communication if more than one 4]
other processor requires information {rom computation of that node. in the two processor case.
only one processor other than the one computing any node might need the result. Ergo. we have ’
the following lemmas concerning two processor schedules on a gruph G = (V' .4). _!
Lemma 3.1 -
N
If there are nodes v and v such that prociu ' # proc(v ), then any node x such that x is an
A
A
immediate predecessor of both v and v 1s a communication node. a
-
Proof —
If x s an immediate predecessor of u and v . then hy definition. (x .« ) € 4 . and .
(v vy €A I proclx P = proclu ) then proctx ) = proctv ) Similariv, if proc(a ) = proclyv ),
-y
procia ) = proclu ). Inany event. x 18 a commumnmication node. i
: A
o~
1«"'
N
-
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G Lemma 3.2
LY
If there are nodes v und v such that proclu ) # proc(y ) and there is a node x such that v
a7
-:':. ix an immediate successor of both v and v . then either ¥ or v 18 a communication node.
hS Proof
Lo If proctx ) = proclu ). then procta ) # proc(v ). Consequently. v is a communication node.
-y
v
o Stmilariv,af proclx ) = proc(y ), then ¢ is a communication node.
o
e e 0
>

Lemma 3.3

If there are nodes ¥ and x such that x is a successor of « (not necessarily immediate). and

proclu ) = proc(x ), then some node in the path from © to x is a communication node.

Proof

I use induction on the length of the path from u 1o x . Suppose x is an immediate successor
of u. Then by definition of communication. ¢ is a communication node. Now suppose that

i emma 3 3 true for any path of length & — 1. and the path from « 10 x has length k. 1f for
wome node v such that v s a child of . v 1s on the path from v to x . and proch ) &= proc(s v,
“hen ¥ is a communication node. If proc(s ) = proctu ). then proc(yv ) # proc( v ). and the lengin
of the nath frem v 1o v s & — 1. Then by the inductive hypothesis. some nade on that path s

a communicauon noue.

Ll

ilorollary 3.1

Wowde o ondvocueh hat procia = coact dhave o commoen successar o then at -axt

CoX Criastlirom v oY s d ocoammuniceton a0 «©
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Proof

This follows directly from Lemma 3.3. If proc(u ) = proc(x ), then a node on the path

from v to x isa communication node. Similarly. if proc(yv )} = proc(x ). then a node on the path

fromu 10 1 ixa communication node.

Corollary 3.2

If nodes u and v such that proc(u ) # proc(yv ) have a common predecessor x . then at least

one node in the path from x tow or in that from x 1o v is a communication node.

Proof

This. tco. follows directly from Lemma 3.3. If proc(x ) = proc(u ), then a node on the path
form x lo v ixacommunication node. otherwise a node on the path from x tou Isa

communication node.

(1

Corollary 3.3

Suppose there are nodes. ¥ . v.w . and x such that v and w arein digjoint paths from u 1o
x. I v and w are computed by different processors. then to compute the subgraph defined by

all raths from & o x requires a mimimum communication cost of 2.

Proof

By Coretlary 3.1 erther the path from v to v or the path fromw 1o 1 has at least one
«ommunicetion node and by Corellary 3 2 either the path from « tov or that fremu tow has
4 wwmmunication node. Then the whote structure has at least two communication nodes, neng?

COmMUNIC2TION JOKL S at jeast 2.
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Now | am reads o introduce the problem. rom this point on, whenever | speak of

e mumication Iam referring to Defimtion 2 of commumcation.

Two Processor Scheduling(2PS)
INSTANCE: GivenadagG = (V' .4)and integersc and ¢ .

QUESTION: Cun G be scheduled on Lwo processors within time ! and communication ¢ ”

Theorem 3.1

2PS is NP-complete.

Proof

To show that 2PS is NP-complete I reduce 3SAT to 1it. Recall that in an instance (X .S) of
3SaT wearegivenasel X ={x ;. x5 - -.x |of variables,and aset S ={s). 5, ...5, | of

clauses. where each clause isof theform s, =(z | = 5 z,3Y such that z, =x or & for vome

/

v € Xandvi.j. 1 €1 £3.1X; <m.Furthermore, for each /. the hiterais =.,. =, ~. and

J

s care distinct. and fornox € X are both x and © 1n the same clause. The questicn 18
‘a nether the ~ar:ables have a truth assignment czusing at least cne hiteral in each (lause Lo be

true.

Firsto for each o € X construct o Jour node gadger asin Figure 20 The tour nodes Tor each
variahledrea v, . u«ndd . Nodea s the scurce node. with arcs .o the Ua o c2nier nodes x
and ¥ represeniing tne variable una ity comyp ement whnrich in turn have ares (o nede 2 . the sink

nede  Next. lor each v € § construct g ve node widgir asn Figure 30 Again. there i a source

e

Nnote Do, caLin arcs te the three tenter nodes - L C ~and T, e three center moedes of 2uch

Cowert o videt ate assecated wtn the thres Bt s sl the clouss Thev i tuon Dave  tos e Che
. Cn A - e I i i . S P -~
o~ L vole Tnatl o2 mombenine ot tne s and o o0 ades o the aadants i cn !
N . ot . EEE - ~ - ~a
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source

center

sink

Figure 2
"Gadget” for node x,

a source
OHOEO

sink
Figure 3:
"Widgit" for clause s,
To construct the graph for 1PS. connect ull of the gadgets followed by all of the widgits
into one column. identifying g, withd _;.v: 1 <i € n +m. Consequently. the source of

one gadget or aidgit is identified with the sink of the previous one in the column. Add

‘(1'
v e s

=

2l

e

s

v

rov v
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additiongl arex from the variable gadeets 10 the ciause wadants as tcllows, Tets € 8 be
pss o zan Moo =a torsemel € €21 S 4 € (nen .ntrovuce an are frem node
Volonede s o Silarlyoal s =8 forseme ] € €31 €5 € o then introduce arc
T,z o0 Tast add the apex AX andares tAN ¢ Jterall l €1 €1 = m oas wellasan are
AN S 0 That s WY s usingle node aath ares s ang 1o all ot the source. sink nodes in the
ctumn This completes the graph for cur instance of 208 \ow set

;o =2n o+ 3 +2 ¢ =20 +Im.

Yvanexamele. consider the following instarce of 3537

INAT evample

\ - “\ ] R .1“‘), {x ] \q‘-..f.‘). (.1 Q.f;..i',')}

Pigure 4 :ilustrates the proposed graph representing this instance of 3SAT.

Fo show that an instance of 2PS constructed in this way is equivalent 1o the original 3SAT

Astance. ~uppose that the mnstance of 3SAT has a sausfving ‘ruth assienment 7. First. assign

ine areyx 1nd all of the ¢ und & nodes to the first processor v/ ", Fer each variable x . .f 1 s

assivned the wulue fadse in 77 then assign v 10 processor £ Por computat.on: otherwise, assizn

to /7 Assizn all of the otaer nodes in the gady2ts 1o the second prcesser 10 5. In addition.

assin o 2 one of the center nodes n ewch cliuse Aicgil asseciated with a irue literal. If more

N

than one gre true then choose ne arbitrandy  Assigr g othier “vidgil ceaters W provesser 1
Thus, r- cessor s arsigned exacilh one center nade of each arable gaceet and euch clause

e

“hiny elve. and the wvalue in 7 oavsoned 1o 2a0h o these s rue. Jhis processor

1 | . . Sy en A st TR .} o - . . . - - S LN . - . N P
allecat i can e coeruied whin e s egaaren S v the Pallcwony van L tocessor
* v e . - - LR - S 1. PR T s e I . e
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Xy
X
Xy
X
)
X
4
X
c =18

2
Figure 4
Graph for 3SAT example

t =23:
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‘e
‘ time 2i. Fach processor computes one gadget center at ume 2t + 1 Forall ;. 1 €/ < m
] . - :
compute the widgit associated with clause ¢ by the schecdule: I computesa, o at time
l‘.
-:, 2n + (3 — 1). The three center nodes are computed by the two processors at times 2n + 3§
By
and 2n + (3 + 1). The arder of therr computation ix arintrary. The final nnde & ,, s
-
i computed by processor P at time 2n + Im + 2 which s the reguired himait
To determine the communication cost, count the communication nodes. Since both
-
processors work on all centers. by Lemma 3.1 each source is a commumication node. (The apex
o
w7 is not @ communication nede.) Also, each center node computed by (@ :x a communication node
C oy <inc¢e L has an arc o a sink that is computed by /'. The only other nedex in the graph are the
i ‘.!
! - . . . - N )
! center nodes computed by £ 1 claim that none of these are communicauion nedes. Fact o x::
- :.‘-
these nodes has an arc 1o the sink of a gadget. also computed by processor /7. and perhaps has -~
. . , T
arcs 1o center widgit nodes. The processor assignment was such that Q only computes widgit :
7.
. centers that have the value irwe in 7' and tnerefore have processor ¢ computing their
cerresponding gadget centers. Then no gadget center computed by 7 hav an arc 1o any aadgnt

center computed by (0. The widgit centers have ares only to source ~ink nodes. Since £

. comrutes all of the @ and & ncdes. no widygit center computed oy /1 v a communication noge:
erge no center node compuied £ 0 is a commumication node

A

e

Counting the cominunication nodes wefind # + n lor the voumzesardin = = for ihe

centers eemputed by . This *~tals 2n = 2m o which i our communicat:on bound.

Now st.opose the instance of 2PS constructed above nas ¢ oluton.

: " yshoa that the
-
.
". . - PN T P
' corresponding instunce of ISAT i3 satifiabie introduce ancther lemn
.A o\..-
", ) =
o Lemma 3.4
o~
- '
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1) A xingle source or sink node 18 computed., or

1) One or two center nodes are computed: if two. both are the center of the saume

vadgel or wadgit.

Proof

Since the apex is the only node of in-degree 0. only .AX s computed a2t time 1, therefore (1)
15 trivial. Since the source/sink nodes are ordered. w1 .j. i < j.thena, isa predecessor of
a .soa must be computed belorea,. Nodebd, ., isa successor of all of the @ nodes and.
therefore. must be computed only after the rest have been finished. Therefore. no two
source sink nodes can be computed at the same time. Similarly. each source sink node is either
a predecessor or successor of each of the center nodes and therefore no source sink can be
computed simultaneously with a center node. Thus. no other node can be computed at the same

time as any single source/sink node.

Since the center nodes cannol be computed at the same time as an\ other kind of node (by
(1) and (1) above) if one processor is computing a center node the other must either be idle or
also be computing a center node. I two center nodes are computed concurrently. they must
both be from the same gadget or widgit since for every gadget or widgit v . the center nodes of

every other gadget or widgit in the column are esther predecessers or successors of all nodes in

@)

Corollary 3.4

The mintimum time for computing the center of a gadgetl s 1. the mimimum f{eor a widygst

venter 1 2.and 1o obtain these mimima hoth processors must work.
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Proof

Since each gadget has two center nodes, the only way to compute both in time 115 for each
of the two processors to compute one of them. Sinmularly. since widgils have three center nodes,
one of the Lwo processors must compute two of them causing the rainimum time to be two. If

one processor did all three the time would be three.

By Lemmma 3.4 and Corollary 3.4, the minimum Ume for computing the graph is

1 . (apex)

+n +m +1 {source’sinks)
+n {gadgel centers)
+2m . (widgt centers)

=2n +3m +2.

This is the time bound given in the instance of the problem. By Corollary 3.4 we see that to
obtain the minimum time for each center, both processors must work. Thus, in any solution te
this instance of 2PS. both processors are active on every center. Then by Coroilary 3.3 the
communwation vithin each gadget and widgit i1s 2. hence the total communication in the gadgeats

and adeits s 20n 4+ om0 This, oo, is the bound exyressed in cur instance of 2PS. Then the

arex canno! be o communicauion node since all communication s used in the rest of the graph

Call the procesvor computing the apex /. Nince the apex i not i commuanication node. ull

cources and sinks are also computed By P sinca forall 1 € ¢ € n +m  he eraph has ures
! A LTdg
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none of the centers computed by P 15 a communication node.

&

A . . - . .
" Now make the truth assignment as {ollows. We know that processor ¢ computes either
N v orf, butnotbhoth vj 1< <n. If . X, . then assign tl lue true t
P;\ X T, butn 0 j.1&8j s Q computes x, ., then assign the value true to
_ variable x 1 if Q computes node £, . then assign false to variable 1. Since gadget centers
l'( ’ :
o
< computed by /7 are not communication nodes. ¢ must compute the gadget center predecessor of
o
~7 every widgtt center computed by Q. Consequently. with our truth assignment, each clause has
N
. a crue literal corresponding to the widgit center computed by ¢ . Since 0 computes at least one
: A
)
O center node in each clause widgit. each must have at least one true literal, and the truth
assignment satisfies (X 8).
O
3.2 Limited In-degree Graphs on Two Processors
5 If we assume that our graph represents a problem with fine grain parallelism. i.e.. each
- node represents an elementary operation such as addition. it makes sense to consider graphs with
..'!.

a ‘a

in-degree limited to two since most elementary operators are either unary or binary. Using the
elements of the previous construction with one change. I show that scheduling a graph of in-
degree 2 in minimum time and communication is also an NP-complete problem. To do so. 1
introduce a new subgraph structure. the 11-node modified widgit, or modgir which is pictured in
figure 5. Label the nodes in the modygit .y through A . starting with the source and lubeling
from left 1o right on each level lin Figure 5). Nodes B.C.and D all have arcs coming to them
from node 1. Now let nodes B through J be the center nodes with B, C . and D beinyg the

crucial centers. Node A has in-degree O, the crucial centers and nodes / and J have in-degree 1

w hereax all other nodes in a muoduit have in-degree 2.

-~ . TR YE "y "W v Tmvr e WV L w L wr W e W T WA T AT e T e e e
Lt e i a- i Ak wl A e Snt Wit i At S da dall e A0SR Sttet T L SRS S M A MR LN R B A ST

mP.

'.\(\ b

¢l

I &N

P
[N

“«

»
4
o

('.l',1

<,
v

r"‘-{:




N
R

?‘-J.“:

Figure 5:
An 11 node Modgit
Lemma 335
A modgit can be scheduled in time 7 on two processors. Furthermore. it cannot he
scheduled in time less than 7.
Proof

Since node A nust be ¢ymputed Fetore any other node, wasmuch av i s he oniv node
i > h

~ith in-7acree ' and (< inerefores 3 nredecessor ot the o 'hers. ing node v ocanner ce coymruier

I

untii - "er a:! ~ther nodes. be r moces A ana 4 nust e Cmputed al e, that s one " rocessor




NN

% ¥ -

Y. i

”

AN

g
P

v

R ALt

O

O SaIRINS
A R W
PR R

must be wdle during computation of each of them. The other nine nodes require time at least §

Lo be computed on two processors. so the whole modgit requires ime 7. I'igure 6 gives an

example of a schedule completing in time 7 to complete the proof.

(!

Lemma 3.6

To compute a modgil in Minimum Lime o 1w processors, egch processor must compute at

least one of the crucial center nodes.

Proof

Te maintain minimum time, a processor can be idle for only one ume umit other than times
1 und 7 After node A is computed. nodes B. C and D are the only available nodes.
Furthermore. no other node becomes available uatil both 8 and D have been computed. If all
three ol the crucial centers are computed by the saume processor. then the second processer is idle

during computation of heth B and 2. which renders minimum time unattainable

)

I'ime 7P Q
1 A idle
2 B C
3 /) idle
4 a !
< Y4 «
6 J /
7 A dle
Figure 6:

A processer senedule 1or g Modgnt
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LLemma 3.7
Coemputation of @ modgil in BHMMUM 1mMe DN UAC Processors reglires commumication cost

al ceast S,

Proof

Pl shea this by counting communication noedes. By Temmua 3 6. at least one of the
cruvial cenvers s computed by each processor e one provesser vomputes ene crucial center and
tne otiier computes tae. Then by Temma 3 1, node 4 s a communication node. We now hase
Lo dases
Case 11 Both /7 ana O are computed by the same processer

Wiarhout loss of generality let 2 compute B oand 120 Node b must be comnuted at time |
Both nodes B and D must be computed before either £ or Focen be computes  |hereture
retther £ nor /7 ocan be computed beture time 4 sivce 7 must use imes 2 and 3w comiate
nodes £ and 1) For e modait te ne computed in ome T onodes /0 ound G miust then B

comruted ot me S/ gndt S st iime 6 and e A w tme T Ther Cre ode o ealn Parr

i G0 ana D miust e 0 miputed B T i the cther B0 w et Tesuits noall o
Pe T g, ot e D ades ey o miunec v oses tho Jemma 3D Ginee eact one has Ta o

Shate s ocievaors oompaed ot e oo cessors Simiiart S, Temma 32 either [ n )

YOS e L i Un gl T T de s A g dimedt successir U both ot tnem Then there ure at

el S0 miMiarioaT ot v Y R D ard enher oo )
Case 2: ° oo oo T e Lot S LTe e T
. T e 1Y "
\ . ' . A e 2 g Teast ne ol M oana
i . .
St e o . - T

LN ) . - v et P e . -
Case 2.1t Soo- o m L ST L COTove T
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! By Jemma 3.1 node C isx a communication node. and by Corollary 3.3, at leust one of o
. nodes G/ 1 and J must be a communication node. .
N
] ¢
¢ v
. AN
N Case 2.1.1: proc(l) = proc(}').
i 7
>
v It proc(E ) = proctG ). then proc(F) = proc(/f ) und vice versa. In either case one of nodes -
v
v -
S Eoand F s a communication node. Then the communication nodes dare .1 . C .. 2d at least one ~
: ~
)
eachot thesets {B. DYV AE . Fland G . H . 1. 71
N
-
Case 2.1.2: Nodes £ and /7 are computed by different processors.
-
)
Bulemma3dl.withu = £, v = F.andx =B and D.both B and D are communication :.-

ncdes  Then the communication nodesare A . BR.C. D . andone ol theset (G ./, 1.7}

Case 2.2 Nodes G und /f are computed by Precessor P

Pracessor O must compute at least four of the nodes B through J . Consequentlv, 0 must

compute at least three of the nodes £, F ./ and J . since it computes onlyv one of the other nodes o
<A In particular. @ must compute at least one immediate predecessor of G or /. and at least
. , "
are ol tnerr immedhate successors. Then the communication nodes are -4 . and 4t least vne ol TN
eacti e pairs VB COE CF UG M and ! L)) »
Case 2.3: HBoth nodes G and /f are computed bv Processer —
B, one deninition of commumication. C 18 a communication node
-
al .. '
Case 2.3.1: Nodes £ and F are computed by the same processor = i
"
. - . . . e
Forst nete that! proct £ = proctF ) then prectl ) = proct /P = 2 because otheraise we SN
carect schoen e the ume bound. Thus. nedes 8 F F G and M oare ali computed by Processor .
.
0 ahen Processer ' must cempute both 7 and J . Then communication nodes are o !
]
1 N4 It ad R N
b . ;o oand H - .
DA
° €
~ i
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Case 2.3.2: Nodes £ and /7 are computed by Jdifferent processors

Again by Lemma 3.1, both 8 and D are communication nodes  Then the communication

nodesare A . B . C . D . andenther £ or F.

Inany event. communication of at least § 1+ incurred and thus the Lemma is proved.

We are now ready for the statement of the problem.
Two Processor Scheduling of Graphs with In-degree Limited to 2 (2PS-2)
INSTANCE: Given a directed acvelic graph G = (V' .4) with maximum in-degree 2 and
integers{ and ¢

QUESTION: Can G be scheduled on two processors in iiine no more than 7z with

communication ¢ost no more than ¢’

Theorem 3.2
IPS-2 s N P-camplete.
Proof

Paail shew this using g proof paralleing that used for 2PS. Recall that | reduced 3-SAT

to thal probiem.

Fo reduce X-SAT 10 2PS-2. ggain vonviruct a 4 -node vadget for each of the » varahles (as

hetoret Por =ich of the m clauses. construct a madgin. To make the entire grapn. dguin Chain

allotihe vaczets oad modoits na sclamins qowener. n s Lase 1o net equate the nk of one

st the ource ot chement. o s tor ek D T 0 0 a0 ;marc o s L

S N 2 0t TS T R T S L aacnt € e ciaise Moavts, a cere LN
Tl L ate L the awse ran L ntte e A Ve need oLom el o

oo eUACTY R ung aTe Tem oS 0t cle v o2ionodes denve Tolegree m
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more than 2. and the sources of all gadgets and modunis have in-decree no more than 1. ax do the
gady s Y

crucial center nodes of the madgits. Now add eone new node. the subsink 55 and the arc

(A .SS). Again.add the apex AX . with ares from 1Y 10 all of the source nodes (increasing
their in-degree 1o no more than 2) and ¢ - arc 10 85 wiving iwan degree of 2. In each modgit,
associate one of the crucial centers with each hiteral in the clause, that s B, represents = 1. C
represents =, - and D represents Z 5 tor a1 €. € m  Next. asn the case with 2PS,
connect the gadgets 1o the crucial center nades of the modygits. I =, = x, for some

1SS0 Sm. 1Sk €31 Snothenaddare(x z) Similarly.if z, = £, for some

1 €i €m. 1€k €£3.1< £n.addarctx 2. ) where, in both cases. =,; means the node
representing 2, tn the madgit. Now each crucial center node has one additional arce going to it.
bringing the in-degree to 2. Let7 =3n + 7m + 2.¢c =2n + 5m. Asanexample. recall 3SAT
example For the Iimited in-degree case. the graph looks something like I'igure 7. Note again
that this is the minimum possible value for ¢ since each gadget must be totally computed in
Lime nc less than 3 before the next can be started. and similarly with the modgits. in time no
less than 7. The apex and subsink account for the other two time units. Similarly. ¢ is the
rummum possibie communication “aithin that time since each gadgel requires communication 2

1o achiere mimimum time. and by Lemmua 3.7 each modgit requires communication $

Now o suppese there is a sauisiving assignment for the 3-SAT problem. Then the graph can
be s heduled aithin the Lime and communication bounds as fcllows. Axin 2PS, let P compute
the apex and all source and sink nodes. Furthermore. il a variable x 15 assigned true in the
salisiving assignment. then P computes node © while 0 computes node v . Otherwise. I
cemrules node voand @ computes node £ Ag¢ain. pick one true literal from each clause. 1! the
hteral prched fora particular clause 1s = - e it correspends 1o node C L wchedule the clause as
in Figure 8. Commurication within the modyit s 8 avath communication nodes .V B . C . D
arnd /. If. cn the other hand. the choxen node is £ or D schedule the modyit ax in figure 9.

Azain. commumeaton within the modgit s § with communication nodes A B.C . D ana /-
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time P Q
1 A idle
2 A C
3 D nile
4 F Vi
h} If G
6 J /
7 A dle

Figure 8:
Schedule if € 1s "chosen” for Processor O

time 7 Q

1 A idle

hi B D (reversed if B s the chasen node)
3 C idle

4 £ F

S G H

6 / J

7 A tdle

Figure 9
Schedule tf A or D s “chosen” for Processor

Because all center gadget nodes computed by F 5o 1o crucial center modygit nodes computed by
I nc gadget center computed by 7 s g communication node. although all those computed by
are. A<n Theorem 3.1. the graph is scheduled by first computing the apex and then kheeping P
constantly active while O works one center gadygel node and 4 center mody! nedes for each

variatie and clause respectively.

Cenverselv, suppose that the graph can be scheduled within time 3n + 7m + 2 and
communication 2+ S ] show that the corresponding instance of 3SAT a8 satisfiable AN
romted out, for this graph thas s the sunimam possible Ume and the mintmum communication
for that t.me. Then each gudygel incurs commurication 2. each medyit :ncurs commumication 5.

ana nerther the apex nor any of the sink nedges can he communication nodes. Then AN | gl

sources. all <inks. and NS must be computed Py the same provessor: saithout loss W oceneraity

v
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et it e /7 Aguin, the gadeet centers computed by /7 cannot be communication nodes.
Conxeguent]y, £ must compute every crucial center modygit node s hose immediate predecessor
sudget eater s computed 2y £ By Lemma 3.6, however. at least vne cruial center of each
modgit must be computed hy 0 Since ae center vadget node computed by £ sy
commurication node. the (gadgel) immediate predecessor of the crucial center computed by (0
sust aleo be comy uted by Q (see the end of the previcus proet /. Agvuin make the fellowing
truth assignment. If Processor O computes nede 1 for the variable v, assgn rve 1o variable 1
othersaase assign the value false 1o v. As before. this compietes the proaf . <ince the literal

asovigied with the modgit crucial center computed by Q0 in each case must have the value (rue.
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CHAPTER 4
SCHEDULING COMPLETE BINARY TREES

ON TWO PROCESSORS

Hu [1961] designed a pelvnemial ime algerithm for scheduling computation trees in
mimmum tume regardless of the number of processors. whereas Afrati et al. [Afrad ll‘)SS]
showed thi Uio minimze communication within that time frame is an NP-complete problem.
Moreover. [ huve shewn that scheduling a general graph on two processors in minimum lime
and communication (within the uime frame) is an NP-complete problem. How difficult is it,
then. 1o schedule a tree on tw e processors in minimum time with minimum communication
cost?

I will address only indirected trees. For these trees. since each node except the root has
cutdegree 1. Definitions 1 and 2 of communication cost are equivalent. In an effort to gain some
insight into the probiem of scheduling computation trees on 1wo processors in minimum time
and communication we study special Kinds of trees, specifically complete binary and ternary

trees. Chapter 4 investigates complete binary trees. whereas Chapter S examines compiete

ternary trees.

Complete binary trees are, in fact. quite easv 1o schedule in minimum time and
coOommMuUNICation on WO Processors.
Theorem 4.1

The complete binary tree B, of height k& can be scheduled on two processors in time 2
with communication cost of 1. Furthermore. computation of B, reguires at least time 2* and

communication ¢ost 1 10 achieve this time

EAA

e P

“nS
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Proof

First consider optimality . Observe that B, hax 2 *F — 1 nedes. The time 1o compute it on

L+l
! 22t =1 R
) LA processors. then. must be at feast | ——z——n | = 2

B To determine the mintmum communication. suppose processor ¢ comyputes the root a1 . and
processo [' computes same other node v € . This must be true for some node v since Lo
opuimize time easch processor must compute half of the non-root nodes. By Lemma 3.3, at least

) ore node on the path from v o v 1S a communication node and communication is thus at least

The schedule for computing B, in optimal time and communication is simple. I'er each
= node v . et prociv ) = P if v is in the right subtree of the root. proc(v ) = Q otherwise.
Processor Q' computes the root. This guarantees communication of 1 since rc(root) is the only
' communication node. bach precessor computes the nodes in its subtree one at a time from the
iel tmost lowest node Lo the root of the subtree. Since each subtree has 2 = 1 nodes. this part

of the computation requires time 2 — 1. At time 2° . Q computes the root.

D

a2

-
LA

u
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CHAPTER S

CH CUHEEN."C L Esy 1 vy 7

SCHEDULING COMPLETE TERNARY TREES

ON TWO PROCESSORS

5.1 An Upper Bound for Com .unication Cost (Schedule)

Compiete ternary trees offer more of a challenge and consequently more insight into the
cverall difficalty of scheduling general trees on two processors than do binary trees. Since each
internd! nede has an odd number of children. we cannol minimize communication by simply
<plitting the tree down the middle as with binary trees. Instead. ] present upper and lower
beunds on cemmunication for computing a complete ternary tree in minimum time. These

boeunds difier only by an additive constant.

-
2 =1

-

First. define the function A () to be This is the number of nodes in a

cemplete tarnary tree of he:ght /.

Theorem 5.1

[ et I' be the complete ternary tree of height & 2 2. and let & be the largest integer such

4
that ~ 2 /t + N(k ) Then 7" can be scheduled in minimum time with the communication cost
al moest<x —h o+ 1. -
s'j
VL
Proof
>.
b
P
let .
2
L =x =h =N"nh 20 2.
ph
Bu defimtion of A,k <A 1+ N + 1) hence L < 3771 4 1. Now picture the tree 7 asin o
‘.
Figure 10 Fach 7, has height & — | — ; and the height of each center node C (/) isk — j. Let ’ ‘
: L
5 = N{k)+ |21}~ 1. and construct the schedule in the following wav. Let processor P

“
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I) o
’ n
! compute 7', . _\(middic ) and subtrees T (left ) for O € €k —h — 1. Processor @ computes o~
ﬂ: subtrees I {right Yfor 0 € j €k — /A — 1. Of the center nodes. let 0 compute C () for .
o . ot
~ . , . . o
N 0 < j €b and P compute all others. ie..C(j)ford < j Sk —h. -
\
i ‘ =
b, For the timinyg, first notice that 17 (R > —2- -
o
*y
(YN . -
e 1) Tet processors £ and Q0 compute nodes in their subtrees from the inside out. that is. starting o
i‘, -d
lJ‘

with 7, _(u ). u € {right . left . middle } and working out toward 7 ,(u ).

: : . L N
t" 2) Both processors continue cor puting these subtrees until processor 0 has only = | nodex
A P4
= remaining in those trees. These nodes are all in 7'.(right ). -

3) Processor P will now have N(h) + é nodes remaining to be computed in T (left ). None

-

AR

of the £ nodes will vet have been computed.

I

L. . .
4) In the next |— | ume units. P computes the bottom C nodes while Q computes the

e
remairing nodes in 7 (right ). -
51 The remaining uncomputed nodes are all in 77 {{eft ) and 1n the center chain of C nodes. !

S
. . L o . - L _
rocessor £ has a total of V(R ) + = | nodes remaining. while Q has V(1) + S+ nodes .
- -~ ‘.\4
~
‘ - L
letl 10 be computed. In the next V() + |- | ume units. let both processors work on their ~
-
respective nodes. Since none of the nodes assigned 1o processor Q is a predecessor of any of the
nodes assigned 1o P . and since C (0) is the only node assigned to processor 0 that is a successor Y
1o those assigned to 7. processors P and Q can work simultaneously on these nodes for
| i T
NihdY+ l-f | time units {i.e., unti] processor P is finished).
L= S
n) Let Q finish the last vne (or if L was odd. two) C nodels).
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E Fuidently. since £ computes [ ————— L and ( computes {Z———— [0l the internal

> =
nodes. both of the processors are active at all times as much as possible. making time minimal

Now examine the communication cost incurred in this schedule  Because each ol the right and

felt subtrees of all center nedes s computed entirely by one processer. the only communication
nodexs 1n the schedule are center nedes. The communication toeach C(j) where) € j S b is
1 ~ince QO computes both C (/) and two of 1its children: C(; + 11V and the (root of the) subtiee

7 (ight ) whereas £ computes the third child of C{ 7). Comiunication is also 1 1o each
, r y

Clivwj b+l <j<b+ |é since processor 22 computes C{ ) and the (root of ) subtree

7 e daswellas C(; + 1) lor 7' (middle ) when j =b + é— ). while 0 compute~ the third

child of C (/). The communicstion to C(b + 1), computed by (. is 2 since 0 computes
T.(right ) whereas P computes the other two children of C(& + 1) Then the total

communicalion cost 1s

=N(h) T-T 1T+ T L T -T2 =T = o+ 1 as devired.

Hence. 1f complete ternarv tree 7 tasheighta =48 + N+ L. L < ¥V "'+ 1 henT

can e scneduled in communication no more than s — /4 + 1.
Notive. w00 thav o < logvk dobut olss 002 tosie =20 Then ae Jdearly haea sleduale

TRGL AL uTes g oorn T ele telndr ot ree m moanamam LLme dhoeymmmunicanr e tore inlp

< = = Y e =R = e 8
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5.2 A Lower Bound for Communication Cost

Having established an uprer Hound on commiunication cost in scheduling complete ternary
trees. | now intreduce several lenmmas and facis about complete ternary trees and their

~chiedules o wid in deternuming o lower bound.

Pirst netice that any ~chedule that minimizes time must partition the non-root nodes into
a0 sels whose sives differ by at most L. xince both processors must do the same amount of
Aotk and must place the roct inte one of these sets. Call an,y partition of the nodes into two

~uch sets g preper partiiion,

5.2.1 Definitions and Notations

Again note that since we are discussing indirected irees, a node’s children and descendants
.Aare 1ls predecessors (rather than ity successors) in the partial ordering described by the tree.
Simalarly, the ancestors of a node are its successors.

For any complete ternary tree 77 of height & with proper partition S = (F Q). define the

foliowing (note that all set membership s with respect 1o S )

Forevervnodev in7 letG(v =R € P Qfsuchtlhatv € R

Anedge (v.ow Visbroken f G{v ) =P and Glw ) = or vice-versa, Fdge (1w )
broken (o level 11f node w s at level ¢ (v isat level i + 1)

Define commiS) 1o be the number of edges broken in the proper partition §. A proper
partition S with a minimal comm(S ) is an optimal parcition

Ina somudar vern. comm (5 0 ) denotes the total number of edyes broken (o a.! fenels at ar
above level:

Pet 77t Vdencte the number of nodes :n £ at level o Simuariy . et Q1) denote the

namber of nodes i Q atienel: Then ) £ /), QU €3 w0 1€ €k

£} “)

£
vy

o

/.
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QOSIIEN a1

. .. Peval've o= 0= Qi dQur =00 ) = Pir by definitien tarever. o bhothdf )
| s

"o arc QU Dare ol intevers
sl E
]
L™ ~
.
}’\‘ \‘ M < N - Al
'I\- ~4 e =r then G dend tes (J. 1 Go= O then ¢ Jdenctes 7
A -
1
‘ (2 Pora €472.Q1.and 0 € ¢ €3 06 el=receiier iwg s wdet 0 G osueh that evactly a
. e schildren s 2o n G
< By s an (G e drecerver torseme G CAP 04, @ € 101,230 then the starus of v is
.. (¢ .a)
-'._.
Fara €1001.2.3) ana recenver s 1 node tha, s in the same set as exactly 3 —a of its
C; <Pildren. Then.ana -recennver s enther /g )d-receiver or a 1Q . @ d-recen er.
A Qreeeiver s a node v osuch that v s a (Q @ Jrecerver for some 1 € ¢ € 3. Similarly
bora P—recciver .
{e e denote the nodes of the i 'th level of 7 v (1) v (3 ). and sav thatv(j)isan at j)-
3
v ree ver forall 1S 7 €3 then{ s an A-receiver Jlevel f Za(j V=4
."‘ =1
L‘ Ade s such that Gy = £ called a Prode a node w such that Glw ) = Q isa(-
wy
: £.2.2 Elementary Observations
<
: (Cearlv alower hound or the number of edges sroken in proper partition S of the non-
T e ob g complete ternany tree 7 ois a lower bound on the commuanication required Sor
A soaecaiing o mamimum time This s onuv a lower neund siree ihere ™ay be ro sctedule
TGS LM tion gl ais Satie e The Trage tenee . neiruInt <N Tne tres
- £ = i T meree to—
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1K Sk dPG) = —dQ U

Tdriy <.
=1

For ol & . the complete ternary tree 77, ol height & has .V (4 ) nodes. of which 3* are
‘eaves. Thus. more than half of the nodes of 7, are leaves. so 2k ). 0k ) > 0. Furthermore.

¢ >2 hen Pk Qlk) 2 4

5.2.3 Schedule Transformations

First 1 <huall force the structure of an optimal partition ol a complete ternary tree 7 of
he:yht & 2 3 inte a strict form, thereby facilitating analvsis. Toward this end | introduce three
irunsicormations Remove3, Remove2. and Elim2. on ~uch partitions. Although Removel and
Remove are delined in terms of [’ -receivers, the transformations are sy mmetrical for Q -

receivers.

1) Remove3(y )

Suppose S = (P. Q) has at least one (I, 3)-receiver v. Then in the following manner we
renvterm S WS =, Q) in which

1) v s a (Q'.0)-receiver. and

1) comm(S ) < comm(S ).

Mk a leaf w in @ such that w is not a child of v Then let

Pr=ip —{v)Ulwl

O =0 —iwlhh U v

Sonce v sy (0 3i-recerver. ali of v s children were Q -rnodes. Then all of v 's children are
O -acdes.and voisa (O O-recerver

New consider comm(S ). The three edges 'rom v o v s children are no longer broken in

S Woedaes (par (v 3.v ) and {par {w ), w ) aere not broken in S then they are broken :n §
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2

() (2) (2] (@) () (2]

Figure 11:
Remove3

since v and w have been switched to Q' and / respectively. This could introduce at most two

new broken edges. So

ommS ) L commi(S 1 =3 +2< commiS).

2) Remove2(v )

If'S has at least one (/. 2)-receiver v whose parent x isin Q. then the following

procedure iransforms § = (2. Q) w0 S8 = (1. Q" ) such that

t)oviis o (Q'. 1)-recer er. and

o

i) comm S ;< comm!S)

Again, vexa cafl v n o such that « as notachildef v Then et

|

R L T U

=0 = wir o
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)
In this case. v 1s now a {(Q°. 1)-receiver since one of 1ts children is in ” whereas the others ﬁ
F}l
are in Q°. Also. x receives one fewer broken arc. At most one new arc, that from w 1o par(w ).
. o
may be broken in §. Consequently, ::
comm(S') € comm(S) =2+ 1 < comm($). <
N
o
Note that both Remove3 and Remove2 cause the 1olal number of broken edges 10 decrease.
Consequently. no optimal partition can have either of the situations allowing Remove3 or -
Remove2 10 be executed. W
>
-
. o
3) Elim2(v .x) o
ke
IS =(P.Q)isa partition in which -
a)v isa (P, 2)-receiver, ‘
b)w isa (Q.2)-receiver, and "
-

s

v

Q

‘ﬁh
EX:

(r) (@) (2) (1) ) () -

! — s

O ()
w w

(7

e

r

Figure 12
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¢)par(v) € P par(x ) € Q.

5

then we transform S to " = (7. Q") in which

Ny .
o 1) visa(Q'. 1)-receiver. K
- 1) x 1sa (P, 1)-receiver. and -
‘e, .:".
- i comm(S’ ) = comm(S). )
N in the ¢ lowing manner. o
N let :'_{
P=P—{v) U lx), .g,
w0 Q=@ —lxhHulvlh o

ks N
-

. The only edges affected are those into and out of v and x. Since only one of v s children is <3
i 1
P . ‘.
< . . . . . S
“» in P only one arc to v is broken in ' Similarly. one of x 's incoming edges is broken in S' . SN
.:w'

i Both (par (v ). v ) and (par (x ). x ) are broken in $". Then exactly 4 of the 8 edges surrounding &
» N
l\(_ o,

RS

[
Qe

&
o
S
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L ol
vioand aoare broken in ST In S each of vound vohad 2 broken edges surrounding it which again _-
Llals 4 Since no other edues were aflecied by the tranvtormation,
cemmi(S ) = commil(S ) -
-
5.2.4 Lemmas and Corollaries )
Lemma S.1(The Left Property) Ry
We can assume. without loss of generality. that in gn optimal partition of a complete
ternary tree ne () -node lies to the feft of any /7 -node ut any jevel
-
..
|
Proof
Consider a compiete ternary tree /7 with opumal partiien § = (/. Q). Foralevel (. let v
Pt:y=m_ P{i+1)=n. Then the number of edges to level ¢ that are broken in § must be at T

least "3m — n !, Thatis. since the m P -nodes at level i have a totlal of 3m children at level

.\»
i +1.if n < 3m . then at least 3m — n of those chiidren must be in Q @ similarly, if n > 3m . ::
then at least n = 3m P -nodes on level ¢ + 1 must have parents in Q. Then any partition must
have at least b
N -
: . s
2 3PUjr =Pt + 1) I*
. =1
-
hroken edges. This mimimum can be achieved by putting the P{i ) lefimost nodex in P’ and the 3
(i) mighimost nodes in O at each level ¢
- )

(
(:

r
Corollary 5.1 (The Simple Property) =
It the lett Property holdsina partition § = (P Q) of a complete ternary tree 7. then X

1) No level has hoth a /7 -receiver and a  -recernver.

i No levei has more than one b -receiver where b € {1, 2}
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D‘.
V.-
-
r- Furthermore no level has both g T-recenner and @ 2-recenner
{
Y K
rod
Ny
:;\‘ - Proof
4
- “
.
AR
Lot 7 be w comyiete ternars tree aath partinion S = () having the lef't propert:.
¢y
< . . . .
W Fhen fet some level i have u 77 -recenver. Faamine the righimoest /° recenver v Sincev isa /-
. recarer b teast one of s children s must be o Q -node By the Feft Property. ali nodes to the
a:\
’ rioht of woondevel d + Tare in 0. Since atl ¢ -nodes en level ¢ oare 1o the right of v all of therr
>, Children must also be Q -nodes. hence none are O -receivers and level ¢ has no Q -receiver. lirgo.

no fenvel has both a /7 -recenver and a (0 -recenner.

I'o demonstrate (110 Jet s be a (/7.5 )-receiver on some level i .o € 1.2} letw be the
. el tmost chidd of voand x be the rightmost child of v Since 1 <5 £ 2 wisa f-node. and

i~ a0 -node By the Left Property. all nodes 1o the leftof w on level ¢ + 1 are [ -nodes:

L\ cinvequently no node to the tett of v cnlevel i can be a F-receiver. All nodes to the right of x
on leveld + 1 are O -nodes: thus, all of the children of euch node to the night of v on level ¢ are
- i Theretore any /7 -nodes 1o the right ol v on level i are {f .3)-receivers. and level { has no
—Lj cther 0P 1= or L) 2 -racercers. The proof for (2. 11- and (Q 2 -receivers strictly parallels the

last aryument.

0

ot

I'would like to tere= ynoptimal plartition 5 = (2, Q) of 4 complete ternary tree of height

19

e 2t least 3 that has the Lett Propert intoa partiiion S = (/7 (07 where
ocommiST = comme s

a8 mantans Both e smet- ad der Properties,

.. v NS has ctle v me 0 L-n cevier then N s

oA )
. Y R

. T« 4l aso thal ar o ot oooaen s e Sote csverss Hthas sreseble then N s i ortimald
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partition has this form. To torce the partition into the above t.rm. | use the following !
KA
.Y
P
o algorithm,
LR t
‘\l "\
- N
- 1 Procedure FormatPartition -
- . .
. 2 begin ~
38 3 while there are at least one (', 2) and one (), 2)-receiver
-;: above level & — 1 do
":
i 4 begin
4 N v := the lowest (7. 2)-receiver above level & — 1
v (that is, the one cloxest 10 the leaves)
{',' 6 x = the lowest (. 2)-receiver above level & — 1
s 7 Elim2(yv . x ), Replace S winth §
20 & end
9 S =5
. 10 end.
-
Lemma 5.2
N
“©
- Given an optimal parution § = (2. Q) of a complete ternary tree 7' as input.
~ FormatPartition converts § 1o §° = (P, Q') as described in (i) through (iii) above.
y l
:',- Proot
~,
3
) First. by Lemma 5.1. we can assume that the Left Property holds for §. The only changes
L%
' made tc § are Elim2 transformations. We know that comm(S ) ix not affected by Elim2(v . x ).
o
,.:' so (1) is obvious. | c¢laim that the [eft Property suill holds after each execution of
>
A T
-, . \ . . - . . . . ~
e, Elim2R{v . x ). This must be true if it holds before the execution. Consider node v. Node v is e
.
a (P .2 -receiver. Thus exactly two of the children of v are Q -nodes. Then all nodes to the
Q' .
A 5
v right of rely) are Q -nodes. and all nodes 1o the left of (v ) are P-nodes. Since the partition is -
N
’-$ optimal 1t has no 3-receivers. so all nodes to the right of v must also be O -nodes. and all nodes -
10 its lefi are £ -nodes. Elim2(v . x ) converis v toa Q -ncde. Since no £ -nodes were 10 its

. \ ~
N right. and no other node on that level is changed. all nodes to the right are sull € -nodes, and ail -
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. E nodes to 1y left are /2 -nodes. Therefore. the }eft Property vull holds on that level. The
\ A
s - . :
:_.: argument ix svmmetric for the level of v Hence. alter each execution of Elim2iv 1), the Lelt
S
.y and. by Corollary 5.1, Simple Properties hold.
3 )
e In order to show that FormatParution terannates | xhow that the aumber o imes the test
) atl line 3 15 executed 1s bounded by the herght of the tree. ['he procedure s repeated onlv il both
(7. 2) recervers and (Q . 2)-recenvers are present in the partivon at the time ol the test. | vo.
the Z-recener w closest 10 the leaves of 77 s elitnnated by EHm20v L x 0 A1l nodes w hose
“a
A

status s changed are ahove the level of w . Then after Elim2(v . 1) (v or x = w lisexecuted.
the Jowest 2-recerver in the part:ion is higher in the tree thun before. and nene of the other

transformations introduce any 2-receivers at any lower level. After the: th uime through the

:: while loop. the lowest 2-receiver is no lower than level & — /. Consequently . xince the while
”

loop terminates if no more than one 2-receiver remains in the paruition, the number of loop
E

iterations is at most & — 1. and therefore i must terminate.
- Upon termination, properties (1) and (i1) of LLemma 5.2 hold. Furthermore. property (ii)
o
“~

is the termination condition ol the proceciure, xo property (i) also holds. Conseguently. an

optimal partition can bhe torced inlo the fyrm stated above.

-r At this point some obsery guions about the effect of different kinds of recerters in an
L4

e

srtimai raruuon are heiptut, Ve Lemmas 8 0 through 5.6 and Corollaries 2 and 83,7 s a

- e d

& comp ete ternary tree with proper rurtition § = (7.0 ) of the form dictated in iemma 5.2

[Lemmma 5.3

.

s

~

Ib Y asnotQ . 2hrecer - ut le b vo-anddQ () 2 1 eer

~
‘ [T AR B dQ kY tamalas 0o 7
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, If level i has no Q -recenvers at all. then each child of every () -node at level h isa Q-
; ¥
<, node. Then T
,

Ly
- QUh + 1) 2 3Q(h)). N

_‘ Convequently, S

N
Plh +1) < 3Ph)).

’ Then o

‘ JQ G + 1) 2 3dQ(h) > dQ(h). B
W -
e If level A has a (Q. 1)-receiver then ar
o
. 138
Qh + N =30h)—1
p~ L
he FPlh +1)=3P(h)+1.

::_ Then ">
A dQ(h + 1) =3Qh)—=3P(h) =2
] =3dQ(h)-2. r"“
‘ |
5 Since dQ (h ) 2 1 o
g Pl

dQ(h + 1) 2 3dQ ) —2dQ(h) =dQ ().
¥ .::
~

v By hvpothesis, these are the only two cases possible.

< o w.
\ 8

: Corollary 5.2 -
:; H s oand 17 oare as described in LLemma 5.3, and there are levels 1 and g such that .

. "\-

Sy Sk —1.anddQth) 2 1.and S has no (Q . 2)-recervers at anyv level i . S1 S g, ]

.: then torall levelsi . h €0 € 3.dQ(g) 2 dQ Ui ). e
> o
>,

. -

i n

<
e - q, DY >. R . -'.' (- S ) \I Py
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Proof

By lemma S 3applied g —h — i@ umes. dQ(h) SdQ(h +1) € < dQ(g)

Lemma 5.4

If therewa level j in 7 such thatdP(j) > OwhiledP{j — 1) < 0. then
aldpP(j)=1.
b dQ(; —1) =1 and

¢)level j — 1 hasa (Q, 2)-receiver.

Proof

By definition, level j — 1 can have no 3-receivers and can have at most one 1- or 2-
receiver. SincedP(; —1) < ObutdP(j +1)> 0. —1 must have a Q-receiver v. If v isa
1. 1l-recerver. then

dP(jY=Q3P(; ~ 1D+ 1)—(30(; —11~1)

=3dP(j =11+

Thus. v must be a (. 2)-receiver. Then
dPUi =3P = 1)+ 2)=(30(; —1)=2)
=347 =11+ 4

€ -3+41=1

Hemee, cincc gl 20 > 0 dP(jY=1 and 3dlt =1 = =3 ~dllj —1)=-1or.

eoarglentin dCT = 1) =1
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ILemma §.5

BX) ]

If S hasno (Q.2)-receivers above level 4 — 1. then for any level [ wherel £ <k -1,

<,
by
o
ari)=1.4f
-
a) dPU = 1) =1 and "
b) § hasa (P, 1)-receiver at level ! — 1. o
-
&
Proof
-~
The proof of I emma 5.5 has two parts. Uirst | show sufliciency of (2) and (b
HdPr{ —1)=1andlevell — 1 hasa{/. 1)-receiver. then ‘-‘
PUY=3PU - 1) 1. o
QU)=3Q( = 1)+ timplyingdP () =3dP( -1)~2=1.
»
To «how necexsity of (a) and (b) assume that dP”(l) = 1. Then since § has no (Q.2)-
receivers above level [ . dP({ — 1) 2 1.otherwise. if JP(I —1) < 1,thendQ( — 1) 2 1, :-

hence dQ (/) 2 1 (by l.emma 5.3) and thus dP (1) € —1 contradicting the assumption

'qu

dP) =1,

Suppose. then. that d7{l — 1) > 1. Then o~
2

PU) 23PU -1)=-2
230U —1)+2) -2 o
=3QU — 1)+ 1. .
)
QY 30U —1)+2. -

Pard

A -
e

Then
dPU) 2 4 —-2=2,
hence by the assumption P (1) = 1. condition (a) 1s necessarv. Then
PUL) =3Pl -1)+eQUI=3Q —1)—€eforseme =2 L ¢ X2
y
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alP) =3, - 1) =300 — 1)+ e
=340 — 1)+ e
=3+ 2e
Then

le = =2 implving € = —1.

Since PUU)Y=320 —1)—1 level!{ — 1 must have a (P 1)-receiver on it.

m

Corollary 5.3

If thereisalevel j in 7 such thatdP () > O whiledP(j — 1)<0, then there are no

((). 2)-recesrvers above level j — 1in T .

Proof

By lemma S 4. thereis a (Q . 2)-receiver on level j — 1. Consequently. by detinition.
there are no (P, ~ 2)-receivers ir. the tree. Furthermore, since d0(j — 1) = 1. by appiving

lemma S5 ; — 1 times. we find
JQUj =2y=d0(j =3)= =dQ()) =1

I'urthermore. there 1s a (Q. 1)-recerver on eacn of these levels; thus no level aboy - level j hasa

¢

ti_ . 2.-recaiver

0

Reca | the cefinition of V() (see section S.1)

l.Lemnaa 5.6

dpr e s opumal.and v ocre s some lelel /o <o LoD that

! _f 2
2 "rere 2 O-receiver levels tme- san the 2aves c2low level A,
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of which » is the tevel of the children of the lowest one. and

30 S hasno (Q. 2)-recenners above level & — 1.
Then
Q) dQ(r) 237

bl 2dQG) 2 Nim)

Proof
The prool 1s by indudtion on m .

Suppose m = 1. Since S has no (Q . 2)-receivers. by Corollary 5.2, dQ(r —1) 2 1. By
definition of r, level r — 115 a O-recenver level sodQ(r )= 3dQ(r — 1) > 3 = 3! {or condition

(a). Since
dQh) 2 1.

2dQi) 2 1+ 3=4=X7N(1)=N(m) which is condition (b).

Now assume that the lemma s true forallm < n. Withm =n.r isthe level of the
children of the n1 th O-recerver level. let 1’ be the level of the children of the n —1st U-receiver

level. By the induction hypothesis.
dQr ) 2 3071

and
2dQ G 2 Nin = 1)

Sincer’ €7 — 1. by Corollary S22 with/ =7 . g =r — 1.JdQ0r — 1) 2 40(r"). By

defimtion. level r — 115 a4 O-recetver level. so

dQ(r) =3d4Q0(r - 1)
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2 3dQ(r)

233" 7)) =3".

Then

TdQW) 2 TdoG)+dQ(r) 2 Nn = 1) +3" = N(n),
=h :=h

5.2.5 The Lower Bound

! now establish the lower bound for the number of edges broken in a proper partition of a

complete ternary tree of height & .

Theorem 5.2

Every proper partition S = (P. Q) of a complete ternary tree T of height k& > 1 has more

than & — log3k + 1 broken edges.

Proof

Firs: consider & = 2. To make a proper partiticn of the complete ternary tree of height 2.
at ieast three (> 2 — 10g;2 + 1) edges must be broken. We see Lhis because, since T'; has 12
non-root ncdes. each of the sets P and ¢ must have 6 ron-roct nodes in 1. Either P or § must
have more of tie nodes at level 1 in it than does the ather. Without loss of generality. assume
that P ha< more. If ail of the nodes at level 1 are .n £ then six nodes at level 2 must be in 0,
wvhicn causes six edges 1o be broken. If. howerer, two nodes at level 1 are in P, then at least
ore -dge "o “he roct must be broken. Furthermcre, 1o et 5 nodes at level 2in Q. at least two

saces o level 1 must e broken: thus at least th-ee  dgew ure broker
“o-. 2 3.1 il prove Theorem 5.2 by coriradictr. Let ¥ = (2 Q) be an optime !
cartan T ads cmose oommiS ) €A —icgyk - L ot that S ) = comm(S L -

< ~¢+ .an ha 2 no 2oges roen Lo the leaves simce (ne- are no 2dges 1o the leaves).

’
s
4

IS

S0 N

CeTetie v a
N ORI

| N
-

- [T
- s 2 ", "p'lfl"""

AN AN

'.- "l ‘s "u K

W

e e s VY AMPRPAT S RN
..‘~‘y A,..'xru

.' 4 1y A a":‘

~y -




L N

DA i o

By LLemma 5.2. we can assume that § has at most one 1- or 2-receiver node al any level
above k — 1 and no 3-receivers anywhere above level k — 1. Because T is a complete ternary
tree. each level has an odd number of nodes. Thus. foralll1 i Sk — 1, P(i)=QG).

Without loss of generality.let P(1) > Q(1).

S
If there is no level j such that Q(j) > P(j) then 2 dP(i) 2 k > 1. hence the partition

=1
is not proper. Consequently. there must be at least one level j such that P(j) > Q(j) but
P(j +1) <Q(j +1). Call any such level a switch-to-Q level. If level k — 1 is the only
switch-10-Q level in 7 .let j =k — 1. Otherwise. let j be the switch-10- level furthest down

in the tree other than ¥ — 1. Now we have two cases.

Casel j <k -1

By Lemma 5.4.dP(j) = 1.and S has a (P.2)-receiver at level j in T'. Consequently. by
Lemma 5.2, S has no (Q. 2)-receivers anywhere in T except. perhaps. at level k — 1.
Furihermore. by Corollary 5.3. S has no (P, 2)-receivers at any level above level j: hence j is
the highest switch-to-Q level. In addition. by Lemma 5.4. S has no switch-10-P levels above
k — 1 since a swilch-10-P level requires a (Q . 2)-receiver: consequently. there is no level i
above j such that Q(i) > P(i). By Lemma 5.5. sincedP(j) =1.dP(j — 1) =1 and level
J — 1 hasa(P.1)-receiver. By applying Lemma 5.5 j — 1 times. we see that for all
1 £i < j.dP(i)=1andleveli hasa (P, 1)-receiver, and level O must be at leasta 1-
receiver level. Level j hasa (P, 2)-receiver. so comm(S. j) = + 2 and

TPG)=50G)+ /.
=y ey

Since $ must be a proper partition,
S

Y Pi)= ¥ QU)—j +e
TR '

=, -1

where € € {—1.0. 1}
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If at least one edge on each level below j is broken. then comm(S. % ~1) 2 k + 1. For

comm(S§) €k —logik + 1.at least
k 4+ 1—1(k —logsk + 1) = logsk

levels between j and k& (exclusive) must be O-receiver levels. Clearly. all conditions for

Lemma 56 withh = + 1 and m = log;k are met. Then by Lemma 5.6.
Y. dQ (i) 2 Nllog k)
1=; 41

logyd +1
3T

2

3k ~1

2

where r is the level of the children of the lowest O-receiver level (not including the leaves). If

r =k .let! =k otherwise.! =k = 1. Then. again since S has no (Q . 2)-receivers above level

{ . by corollary 5.2.dQ (i) 2 dQ(r )foralii.r £i <{. Thus.

}:dQu)>§"_.

to

Two pussible subcases arise al this juncture.

Casel.1 2(x) > Px)

In this case.

¥ odorivy k1
Czooe]

t

Since S has at least wog.x + 1 O-receiver levels (including the leaves). T has o least that many

leve.s beloa 7. Then
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‘:*
= JdPli) +e »,.i
i =1 o
=j+e €€{—1.01} o
-
Furthermore,
~
k > 1impliesk —logik < ékT_-l-
5;'
and [
k 2 j +logsk + 1implies j €k — logsk — 1, -
SO .
'I)
" 5
j +eSk —logk. -
Then _:
4
k —logsk 2 j+e= 3, dQG)
=541
3k -1
2 5 > k — logsk -
\:‘
or
k = logik > k — logsk =
which is a contradiction. Thus. in this case comm(S) > k — logsk + 1. _{‘
Case .2 P(k)> Q(k) &
N -
Since j < k — 1. we still know that dQ (k — 1) 2 3" =% . Since P(k) > Q (k). at -
i -1 s
least of the nodes at level k¥ — 1 have children in P.
2 -
Concerning the nodes at level & — 1, we know that "
L
3ot =2P(k = 1) +dQk — 1) -
i.e the total number of nodes at level & — 1 is e
.“.
L |
e - LA I N K RS R A SRS .._-r.--_.-"-..._.( « . --q‘-(-
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' Ple = 1)+ (Qk =1)=Plk = 1N+ Pk ~1) -
" ~
Then -
“’
7
i =] —_ “u
& Y =Pk -1+ iQ_(_"__‘_)'. 0
2 2
o 3
v dQ(k = 1) o
So at least - Q -nodes on level ¥ — 1 have children in P hence at least t.~
. Ny
RS
Mx} =dQk — 1)+ fj_Qi_-_ll 2k +1 0
<. 2 2 A
- s
. <
- 3
edges are broken. Then the overall partition has -

o
»

[ S

o

>4
comm(S) 2 j+1+k +1>k —logik +1
S
::: which is a contradiction. Therefore. in this case. comm(S) > k — log;k + 1. -_;:
E -
*
Casell j =k —1 ie.forall1 i <k, PG)>Q()Pk)<Qk) e
. By Lemma 5.4.if P(k) < Q(k) while P(k — 1) > Q(k — 1), at least 2 edges 10 level
RS
- k — 1 must be broken. If at least one edge is broken 10 each level above k — 1 then \

b

comm(S) 2 &k + 1. Toget comm(S) € k —logsk + 1. atleastk + 1 — (k — logsk + 1) levels

14
v
>

above & — 1 must be O-receiver levels. Since P(i) > Q(i)foralll £ < k.by Lemma 5.6,

»

i dP(k —1) > 3% = e

¥ s
and

e,

I\<

N

o -1 logga +)
Yar(iy2 3 _Z1 %1
=) 2 2

Pecause S is a proper par:.tion,

i =1
iQk)= 2 dP  +¢

-

ﬂ Purticulariv. ¢Q20k 2 1. [nenby theargume~ venin Case 1.2, ot e 1
’

- dQk — 1)
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edges are broken 1o level & — 1. Since at least as many edges are broken in the entire partition

A S YYD

sr‘(-‘

as are broken at the lowest level. this cannot give a partition with comm(S§ ) Sk —logik + 1.

N4

] hY

5.3 Comparison of Upper and Lower Bounds

Unsurprisingly. the upper and lower bounds presented in Sections 5.1 and 5.2 are quite 2
tight. They are within one of each other for all values of X . and correspond on many.
Corollary 5.4 .-

, ]

If A 1s as defined as in Section 5.1, i.e., h 1s the largest integer such thatk 2 h + N(h),
the lower bound for communication cost is achievable for all trees of height & such that
k 2 3" *! using the schedule presented.

Proof
The proof is algebraic. For T of height &k =h + N(h) + L, the schedule presented in
Section 5.1 has communication cost & — h + 1. 1If the lower bound is achieved. then "
k —logik +1 <k —h +1 <k —logk +2.
‘.
Thus. -
logyk > h 2 logsk — 1. :..
ork > 3" . and 3"*' 2 k. For this 1o be so. 1
N
DO
h+1 -—
L2337 g |
2 ‘
For A to be within the right range. L must be no more than 3" *! — 1 + 4. The value computed '
above lies well within this range. Thus. for i
PN - 1
2h + . >k 2 3" &
- N,
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the lower bound on communicaticn is achieveble. This is not surprising since the schedule
presented in Section 5.1 follows the format of the optimal partition presented in Section 5.2

very closely at least as far down as the switch-t0-Q level. which is as far as 1 define 1L
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CHAPTER 6

CONCLUSIONS AND OPEN PROBLEMS

Scheduling dags on many processors 1o minimize completion time has long been known to
be a difficult problem. In some restricted cases, however, the problem is not so bleak. When we
iry to schedule a general dag on 1wo processors, or a lree on any number of processors. we can

do so in time polynomial in the size of the graph.

Knowing this. it is reasonable to wonder how difficult the problem becomes if we introduce
a new constraint, that of minimizing communication cost, to the problem. Although scheduling
a general dag on Lwo processors in minimum time can be done in polynomial time. I have shown
that when a communication cost constraint is added. the problem again becomes NPzcomplete.
Afrati et al. [Afrati 1985] show that scheduling a tree on an arbitrary number of processors is

also an NP-complete problem.

The difficulty of the problem of scheduling a tree on two processors in minimum tine and
communication cost cannot be directly inferred from the previous results, and it remains open.
For comyplete binary and ternary trees. however. | have determined upper and lower bounds on

the communication cost of computation in minimum time.

First. a complete binary tree can be computed in minimum time on two processors with
communication cost 1. This is also the minimum communication that must be incurred.
Second. | show that a complete ternary tree of height k¥ can be scheduled in minimum time with

communication cost no more than k — A + 1 where h is defined to be the largest integer such

. 3T -
thatk 2 i + ——5——. Asa lower bound. I show that communication cost greater than
k —log;k + 1 is required for a minimum time schedule. Comparing these bounds, we can : -

that a lower bound is achieavable for an infinite number of trees using the algorithm |
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presented.

Saveral questions remain to be solved. primarily concerning scheduling trees.

1) Is the problem of scheduling an in-directed tree on two processors in minimum time and

L

communication NP-complete?

"’
A

2) If so. what happens if we further restrict the tree to a binary trees? Is it easier to schedule a

binary tree in minimum time and communication?

a a

r...' e

3) How difficult i1s it to schedule an out-directed tree on an arbitrary number of processors in
o minimum time and communication cost (using Definition 2 of communication cost)?

"

4) Again.f the problem is NP-complete. how difficuit 1s it to schedule an out-directed tree on

A
"N . . .
e two processors? How difficult for an out-directed binary tree?

“« .= - .
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